Fenestra LC

Fenestra_EN_LC_RGB

vile-lc-1x

micro-CT Contrast Agent with Multiple Applications

Product: Fenestra® LC
Composition: 1,3-bis-[7-(3-amino-2,4,6-triiodophenyl)-heptanoyl]-2-oleoyl glycerol (DHOG) in a 20% (w/v) total triglyceride oil-in-water emulsion with 10% DHOG (nominal 50 mg I/mL)
Description: MediLumine’s Fenestra LC provides visualization of the hepatobiliary system by exploiting the endogenous lipid metabolism pathways present in the body. Fenestra LC mimics chylomicron remnant particles and thereby localizes the contrast-producing lipids it contains into the hepatic parenchyma.  Because the uptake and clearance profiles of the lipid molecules are determined by the metabolic status of extracellular and intracellular liver lipases, Fenestra LC provides the ability to assess both hepatobiliary anatomy as well as liver function by CT imaging.
Application: Detection, staging, and monitoring of parenchymal liver diseases, Quantitation of metastatic tumour burdens in soft tissues, soft tissue contrast for multimodal imaging.
Disciplines: Diabetes, Fatty Liver Disease, Oncology, Drug Discovery & Imaging Research
User Guides / Brochures / Certificate of Analysis: Imaging Hepatic CT26 Tumors in BALB/c Mice as a Model of Metastatic Liver CancerFenestra Optimal Usage Guide / Fenestra Product Brochure / Certificate of Analysis 

    Applications

    Micro-CT Quantification of Liver Tumor Burdens

    Fenestra LC User Guide with MicroCAT II Imaging Hardware

    Coronal view (left image) and 3D reconstruction (right image) of male Balb/c mouse with hepatic CT-26 adenocarcinoma 2 hr after IV injection of Fenestra LC.  The CT-26 tumor is observed at the lower edge of the liver with a narrow rim of enhanced liver below the tumor and was colorized (purple) in the 3D reconstruction.

    Detection, Staging and Monitoring of Liver Diseases (eg. Diabetes)

    Fenestra LC Diabetes

    Publications

    Oncology

    1. Lasnon C, Quak E, Briand M, Gu Z, Louis MH, Aide N. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res. 2013 Jan 17;3(1):5.
    2. Akladios CY, Bour G, Raykov Z, Mutter D, Marescaux J and Aprahamian M. Structural imaging of the pancreas in rat using micro-CT: application to a non-invasive longitudinal evaluation of pancreatic ductal carcinoma monitoring. J Cancer Res Ther. 2013, 1(2): 70–76
    3. Akladios CY, Bour G, Balboni G, Mutter D, Marescaux J, Aprahamian M. [Contribution of microCT structural imaging to preclinical evaluation of hepatocellular carcinoma chemotherapeutics on orthotopic graft in ACI rats]. Bull Cancer. 2011 Feb;98(2):120-32. doi: 10.1684/bdc.2011.1303.
    4. Martiniova L, Schimel D, Lai EW, Limpuangthip A, Kvetnansky R, Pacak K. In vivo micro-CT imaging of liver lesions in small animal models. Methods 50 (2010) 20–25
    5. Kitahashi T, Mutoh M, Tsurusaki M, Iinuma G, Suzuki M, Moriyama N, Yoshimoto M, Wakabayashi K, Sugimura T, Imai T. Imaging study of pancreatic ductal adenocarcinomas in Syrian hamsters using X-ray micro-computed tomography (CT). Cancer Sci. 2010 Jul;101(7):1761-6. Epub 2010 Apr 7.
    6. Rampurwala M, Ravoori MK, Wei W, Johnson VE, Vikram R, Kundra V. Visualization and quantification of intraperitoneal tumors by in vivo computed tomography using negative contrast enhancement strategy in a mouse model of ovarian cancer. Transl Oncol. 2009 May;2(2):96-106.
    7. Choukèr A, Lizak M, Schimel D, Helmberger T, Ward JM, Despres D, Kaufmann I, Bruns C, Löhe F, Ohta A, Sitkovsky MV, Klaunberg B, Thiel M. Comparison of Fenestra VC Contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Invest Radiol. 2008 Feb;43(2):77-91.
    8. Graham KC, Ford NL, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC, Holdsworth DW, Drangova M, Chambers AF. Noninvasive quantification of tumor volume in preclinical liver metastasis models using contrast-enhanced x-ray computed tomography. Invest Radiol. 2008 Feb;43(2):92-9.
    9. Martiniova L, Ohta S, Guion P, Schimel D, Lai EW, Klaunberg B, Jagoda E, Pacak K. Anatomical and Functional Imaging of Tumors in Animal Models Focus on Pheochromocytoma. Ann. N.Y. Acad. Sci., 1073:392-404, 2006.
    10. Ohta S, Lai EW, Morris JC, Bakan DA, Klaunberg B, Cleary S, Powers JF, Tischler AS, Abu-Asab M, Schimel D, Pacak K. MicroCT for high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int. J. Cancer, 119:2236-2241, 2006.
    11. Ohta S, Lai EQ, Taniguchi S, Tischler AS, Alesci S, Pacak K. Animal Models of Pheochromocytoma Including NIH Initial Experience. Ann. N.Y. Acad. Sci. 1073:300-305, 2006.
    12. Oldham M, Sakhalkar H, Oliver T, Wang YM, Kirpatrick J, Cao Y, Badea C, Johnson GA, Dewhirst M. Three-dimensional imaging of xenograft tumors using optical computed and emission tomography. Medical Physics. 33(9):2193-3202, 2006.
    13. Weber SM, Peterson KA, Durkee B, Qi C, Longino MA, Warner TM, Lee FT Jr, Weichert JP. Imaging of Murine Liver Tumor using MicroCT with a Hepatocyte-Selective Contrast Agent: Accuracy Is Dependent on Adequate Contrast Enhancement. J Surg Research, 119(1):41-5, 2004.
    14. Wisner ER, Weichert JP, Longino MA, Counsell RE. Percutaneous CT lymphography using a new polyiodinated biomimetic microemulsion. Academic Radiology 9:S191-93, 2002.
    15. Wisner ER, Weichert JP, Longino MA, Counsell RE, Weisbrode ST. A polyiodinated chylomicron remnant-like emulsion for percutaneous CT lymphography: synthesis and preliminary findings. Invest Radiol. 37(4):232-9, 2002.
    16. Weichert JP, Lee FT Jr., Chosy, SG, Longino MA, Kuhlman JE, Heisey DM, Leverson GE. Combined hepatocyte-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits. Radiology 216:865-871, 2000.
    17. Weichert JP, Longino MA, Spigarelli MG, Lee Jr FT, Schwendner SW, Counsell RE. Computed Tomography Scanning of Morris Hepatoma with Liver-Specific Polyiodinated Triglycerides. Acad. Radiol. 3:412-417, 1996.
    18. Weichert JP, Lee FT Jr., Longino MA,Bakan DA, Spigarelli MG, Francis IR and Counsell RE. Computed tomography scanning of hepatic tumors with polyiodinated triglycerides. Acad. Radiol. Aug;3 Suppl 2:S229-31.

    Multimodal Imaging (Cancer, Diseases)

    1. Lasnon C, Quak E, Briand M, Gu Z, Louis MH, Aide N. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res. 2013 Jan 17;3(1):5.
    2. Wall JS, Kennel SJ, Richey T, Allen A, Stuckey A, Weiss DT, Macy SD, Barbour R, Seubert P, Solomon A, Schenk D. Generation and characterization of anti-AA amyloid-specific monoclonal antibodies. Front Immunol. 2011 Aug 8;2:32.
    3. Gabie de Jong, Thijs Hendriks, Rob Bleichrodt, Martin Gotthardt, Eric Visser, Wim Oyen and Otto Boerman. FDG-PET, CT and MRI for the detection of experimental colorectal liver metastases: An exploratory study. J Nucl Med. 2011; 52 (Supplement 1):312
    4. Tsui B, Mok G, Wang Y, Taso A, Bedja D, Yu J, Gabrielson K, Nimmagadda S, Bengal F, Pomper M. High-resolution small animal SPECT/CT imaging of atherosclerotic plaques in ApoE-/- mice using Tc-99m Annexin-V and contrast enhanced CT. J Nucl Med. 2007; 48 (Supplement 2):103P
    5. Tsui B, Mok G, Wang Y, Taso A, Bedja D, Yu J, Gabrielson K, Nimmagadda S, Bengal F, Pomper M. High-resolution small animal SPECT/CT imaging of atherosclerotic plaques in ApoE-/- mice using Tc-99m Annexin-V and contrast enhanced CT. J Nucl. Med. 48(S2):103P, 2007.
    6. Wall JS, Kennel SJ, Paulus M, Gregor J, Richey T, Avenell J, Yap J, Townsend D, Weiss DT, Solomon A. Radioimaging of light chain amyloid with a fibril-reactive monoclonal antibody. J Nucl Med. 2006 Dec;47(12):2016-24.
    7. Avenell, J. Evaluating non-invasive microPET/CT imaging of K-562 myelosarcoma for monitoring tumor growth and angiogenesis in untreated and treated mice. J Nucl Med. 2006; 47 (Supplement 1):556P
    8. Isobe s, Tsimikas S, Zhou J, Fujimoto S, Sarai M, Branks MJ, Fujimoto A, Hofstra L, Reutelingsperger CP, Murohara T, Virmani R, Kolodgie FD, Narula N, Petrov A, Narula J. Noninvasive Imaging of Atherosclerotic Lesions in Apolipoprotein E-Deficient and Low-Density-Lipoprotein Receptor –Deficient Mice with Annexin A5. J Nucl Medicine. 2006 47:1497-1505.
    9. Wall JS, Kennel SJ, Paulus MJ, Gleason S, Gregor J, Baba J, Schell M, Tichey T, O’nuallain B, Donnell R, Hawkins PN, Weiss DR, Solomon A. Quantiitative high-resolution microradiographic imaging of amyloid deposits in a novel murine model of AA amyloidosis. Amyloid: The Journal of Protein Folding Disorders. 12(3):149-156, 2005.
    10. Aykac D, Price JR, Wall JS. 3D Segmentation of the Mouse Spleen in microCT via Active Contours. 2005 IEEE Nuclear Sciences Symposium Conference Record. M03-91, p1542-1545.
    11. Weichert JP, Perlman SB, Lee FT, Johnson CD, Coyle TM, Bennet L. Comparison of a hepatocyte-selective polyiodinated triglyceride CT contrast agent and FDG-PET in the woodchuck model of spontaneous hepatocellular carcinoma. Radiologic Society of North America, 87th Annual Meeting, Chicago IL, 2001.