ProductsOverview

Fenestra® Imaging Agents

Fenestra® is a licensed technology that solves several key problems associated with micro-CT imaging. This biochemically activated emulsion is comprised of iodinated lipids that provide contrast enhancement and a novel oil-in-water lipid emulsion that selectively localizes the lipids for small animal imaging. The unique Fenestra® formulation is biodegradable and completely eliminated by hepatocyte metabolism.

Mvivo™ Imaging Agents

Mvivo™ is our nanoparticle contrast agent line of products for in-vivo imaging. These contrast agents are are ideal for applications such as targeted imaging, vascular and tumor imaging, techniques that require high resolution contrast agents to match the higher resolution preclinical imaging modalities:

Bradykinin Receptor Modulators

Based on a proprietary sequence of natural and unnatural amino acids, the biostable B1R agonist for blood brain tumor barrier (BBTB) permeabilization, B2R for general blood brain barrier permeabilization and B1R/B2R agonist for optimum BBTB/BBB permeabilization are available exclusively through MediLumine.  MediLumine offers three different peptide agonists which are ideal for co-injection with other contrast agents and possible therapeutic compounds to cross the blood brain barrier.

These agonists can also be used for other applications since recent publications have shown that they are expressed in other disease states.

Systems & Accessories

MediLumine™ offers accessories and high quality hardware solutions for challenging aspects of preclinical in vivo research such as control/maintenance of animal body temperature during experimental surgery, high quality anesthesia and performing successful tail vein injection:

.

Chemical Opening of Blood Brain Barrier

Representative intravital confocal images of a mouse brain microvasculature following i.v. injection of FITC-Dextran (MW 2 MDa) (A) and 30 min post-injection of MediLumine’s B2R agonist (0.050 mg/kg or 1.25 μg/mouse) showing extrasavation of FITC-Dextran (B). Scale represents the intensity of fluorescence (Courtesy of Drs Martin Lepage and Fernand Gobeil).

 

 

Publications

Oncology

  1. Lasnon C, Quak E, Briand M, Gu Z, Louis MH, Aide N. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters. EJNMMI Res. 2013 Jan 17;3(1):5.
  2. Akladios CY, Bour G, Raykov Z, Mutter D, Marescaux J and Aprahamian M. Structural imaging of the pancreas in rat using micro-CT: application to a non-invasive longitudinal evaluation of pancreatic ductal carcinoma monitoring. J Cancer Res Ther. 2013, 1(2): 70–76
  3. Akladios CY, Bour G, Balboni G, Mutter D, Marescaux J, Aprahamian M. [Contribution of microCT structural imaging to preclinical evaluation of hepatocellular carcinoma chemotherapeutics on orthotopic graft in ACI rats]. Bull Cancer. 2011 Feb;98(2):120-32. doi: 10.1684/bdc.2011.1303.
  4. Martiniova L, Schimel D, Lai EW, Limpuangthip A, Kvetnansky R, Pacak K. In vivo micro-CT imaging of liver lesions in small animal models. Methods 50 (2010) 20–25
  5. Kitahashi T, Mutoh M, Tsurusaki M, Iinuma G, Suzuki M, Moriyama N, Yoshimoto M, Wakabayashi K, Sugimura T, Imai T. Imaging study of pancreatic ductal adenocarcinomas in Syrian hamsters using X-ray micro-computed tomography (CT). Cancer Sci. 2010 Jul;101(7):1761-6. Epub 2010 Apr 7.
  6. Rampurwala M, Ravoori MK, Wei W, Johnson VE, Vikram R, Kundra V. Visualization and quantification of intraperitoneal tumors by in vivo computed tomography using negative contrast enhancement strategy in a mouse model of ovarian cancer. Transl Oncol. 2009 May;2(2):96-106.
  7. Choukèr A, Lizak M, Schimel D, Helmberger T, Ward JM, Despres D, Kaufmann I, Bruns C, Löhe F, Ohta A, Sitkovsky MV, Klaunberg B, Thiel M. Comparison of Fenestra VC Contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion. Invest Radiol. 2008 Feb;43(2):77-91.
  8. Graham KC, Ford NL, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC, Holdsworth DW, Drangova M, Chambers AF. Noninvasive quantification of tumor volume in preclinical liver metastasis models using contrast-enhanced x-ray computed tomography. Invest Radiol. 2008 Feb;43(2):92-9.
  9. Martiniova L, Ohta S, Guion P, Schimel D, Lai EW, Klaunberg B, Jagoda E, Pacak K. Anatomical and Functional Imaging of Tumors in Animal Models Focus on Pheochromocytoma. Ann. N.Y. Acad. Sci., 1073:392-404, 2006.
  10. Ohta S, Lai EW, Morris JC, Bakan DA, Klaunberg B, Cleary S, Powers JF, Tischler AS, Abu-Asab M, Schimel D, Pacak K. MicroCT for high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int. J. Cancer, 119:2236-2241, 2006.
  11. Ohta S, Lai EQ, Taniguchi S, Tischler AS, Alesci S, Pacak K. Animal Models of Pheochromocytoma Including NIH Initial Experience. Ann. N.Y. Acad. Sci. 1073:300-305, 2006.
  12. Oldham M, Sakhalkar H, Oliver T, Wang YM, Kirpatrick J, Cao Y, Badea C, Johnson GA, Dewhirst M. Three-dimensional imaging of xenograft tumors using optical computed and emission tomography. Medical Physics. 33(9):2193-3202, 2006.
  13. Weber SM, Peterson KA, Durkee B, Qi C, Longino MA, Warner TM, Lee FT Jr, Weichert JP. Imaging of Murine Liver Tumor using MicroCT with a Hepatocyte-Selective Contrast Agent: Accuracy Is Dependent on Adequate Contrast Enhancement. J Surg Research, 119(1):41-5, 2004.
  14. Wisner ER, Weichert JP, Longino MA, Counsell RE. Percutaneous CT lymphography using a new polyiodinated biomimetic microemulsion. Academic Radiology 9:S191-93, 2002.
  15. Wisner ER, Weichert JP, Longino MA, Counsell RE, Weisbrode ST. A polyiodinated chylomicron remnant-like emulsion for percutaneous CT lymphography: synthesis and preliminary findings. Invest Radiol. 37(4):232-9, 2002.
  16. Weichert JP, Lee FT Jr., Chosy, SG, Longino MA, Kuhlman JE, Heisey DM, Leverson GE. Combined hepatocyte-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits. Radiology 216:865-871, 2000.
  17. Weichert JP, Longino MA, Spigarelli MG, Lee Jr FT, Schwendner SW, Counsell RE. Computed Tomography Scanning of Morris Hepatoma with Liver-Specific Polyiodinated Triglycerides. Acad. Radiol. 3:412-417, 1996.
  18. Weichert JP, Lee FT Jr., Longino MA,Bakan DA, Spigarelli MG, Francis IR and Counsell RE. Computed tomography scanning of hepatic tumors with polyiodinated triglycerides. Acad. Radiol. Aug;3 Suppl 2:S229-31.

Therapeutic

  1. Fernandes PD, Gomes N de M, Sirois P. The bradykinin B1 receptor antagonist R-954 inhibits Ehrlich tumor growth in rodents. Peptides. 2011 32: 1849–1854
  2. Kaufman GN, Zaouter C, Valteau B, Sirois P, Moldovan F. Nociceptive tolerance is improved by bradykinin receptor B1 antagonism and joint morphology is protected by both endothelin type A and bradykinin receptor B1 antagonism in a surgical model of osteoarthritis. Arthritis Research & Therapy. 2011;13(3):R76. doi:10.1186/ar3338.
  3. Catanzaro O., Capponi J. A., Michieli J., Labal E., Di Martino I., Sirois P. (2013). Bradykinin B(1) antagonism inhibits oxidative stress and restores Na+K+ ATPase activity in diabetic rat peripheral nervous system. Peptides 44, 100–104. 10.1016/j.peptides.2013.01.019
  4. Catanzaro O, Labal E, Andornino A, Capponi JA, Di Martino I, Sirois P. Blockade of early and late retinal biochemical alterations associated with diabetes development by the selective bradykinin B1 receptor antagonist R-954. Peptides. 2012;34:349–352.
  5. Catanzaro OL, Dziubecki D, Obregon P, et al. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice. Neuropeptides. 2010;44:187–189.
  6. Vasquez-Pinto L. M., Nantel F., Sirois P., Jancar S. (2010). Bradykinin B(1) receptor antagonist R954 inhibits eosinophil activation/proliferation/migration and increases TGF-beta and VEGF in a murine model of asthma. Neuropeptides 44 107–113

Selective Opening of Blood Brain Tumor Barrier for Drug Delivery and Brain Tumor Imaging

  1. Côté J, Savard M, Neugebauer W, Fortin D, Lepage M, Gobeil F. Dual kinin B1 and B2 receptor activation provides enhanced blood–brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biology & Therapy. 2013;14(9):806-811.
  2. Côté J, Bovenzi V, Savard M, Dubuc C, Fortier A, et al. (2012) Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model. PLoS ONE 7(5): e37485. doi:10.1371/journal.pone.0037485

Safety and Pharmacokinetics

  1. Savard M, Côté J, Tremblay L, Neugebauer W, Regoli D, Gariépy S, Hébert N, Gobeil F. Safety and pharmacokinetics of a kinin B1 receptor peptide agonist produced with different counter-ions.  Biol Chem 397(4): 365-372
  2. Savard M, Côté J, Tremblay L, Neugebauer W, Regoli D, Gariépy S, Hébert N, Gobeil F. Preclinical pharmacology, metabolic stability, pharmacokinetics and toxicology of the peptidic kinin B1 receptor antagonist R-954. Peptides. 2014 Feb;52:82-9. doi: 10.1016/j.peptides.2013.12.009. Epub 2013 Dec 18.